# String-like structures in complex Kerr geometry: Calabi-Yau twofold from the Kerr theorem 

Alexander Burinskii<br>NSI, Russian Acad. of Sci., Moscow, Russia<br>Round Table 5 France-Italy-Russia@Dubna., December 18, 2012, JINR Dubna<br>based on:<br>A.B., String-like structures in the four-dimensional Kerr geometry: .. [arXiv: arXiv:1211.6021];

BLACK HOLES - STRINGS - PARTICLES It is commonly recognized now that black holes are related with elementary particles and string theory ['t Hooft (1990), A.Salam and J. Strathdee (1976), Witten (1992), C.F.E. Holzhey and F. Wilczek (1992), A. Sen (1995), at al.].


FUNDAMENTAL STRINGS are soliton like solutions to low-energy string theory.
Some solutions to Einstein's eqs. are exact solutions to effective string theory. PP-WAVES, Horowitz \& Steif (PRL 1990), A. Tseytlin (PRD 1993).
Strings as Solitons \& Black Holes as Strings. Dabholkar at.al (1990-1995).
FUNDAMENTAL CHARGED HETEROTIC STRING solution, [A. Sen (NPB 1992-1993)]
Traveling waves as modes of string excitations, D.Garfinkel (PRD 1992).
TWISTORS: Kerr-Schild $\Leftrightarrow$ TWISTOR-STRING (Nair, Witten), Twistors in N=2 critical string (Ooguri-Vafa 1991)
Kerr-Newman (KN) solution: gyromagnetic ratio $g=2 \quad \Rightarrow$ gravitationalbackground of electron! [Carter, Israel, Debney\&Kerr\&Schild, Lopez, AB.]
Spinning particles $!\Rightarrow($ spin $/$ mass $)$ ratio, $J / m>10^{20}$ (units $G=\hbar=$ $c=1) \quad \Rightarrow a=J / m \gg m$, and black hole horizons disappear: over-rotating Kerr geometry!

NAKED KERR's SINGULAR RING. - the spacetime is a singular, twosheeted and has a closed timelike curves!

METRIC SHOULD BE REGULATED TO A FLAT SPACETIME NEAR THE CORE 4d analog of the "Repulson" and enhancon model in M-theory [Townsend, Sen, Polchinski, Johnson\&Järv et al. (1995-2000)]

Kerr-Sen solution to low energy string theory: The Kerr solution with axion and dilaton, A. Sen (PRL 1992). Regulated Kerr singular ring may be interpreted as a closed fundamental string. [Sen (1992), AB (1995)]

The Kerr SINGULAR RING is a 'closed' heterotic string. The field around Kerr-Sen solution to low energy string theory is similar to the Sen solution for HETEROTIC STRING. AB (PRD 1995) (Lightlike circular currents.)
Aim of this treatment is an open and complex string which emerges in the complex Kerr geometry.

## Structure of the REAL Kerr-Newman solution: Metric

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+2 H k_{\mu} k_{\nu}, \quad H=\frac{m r-e^{2} / 2}{r^{2}+a^{2} \cos ^{2} \theta}, \tag{1}
\end{equation*}
$$

and electromagnetic (EM) vector potential is

$$
\begin{equation*}
A_{K N}^{\mu}=R e \frac{e}{r+i a \cos \theta} k^{\mu} . \tag{2}
\end{equation*}
$$

Gravitational and EM fields are concentrated near the Kerr singular ring.


The Kerr ring forms a branch line of space. The KN geometry is TWOSHEETED! Vector field $k_{\mu}(x)$ is tangent to Principal Null Congruence (PNC),

$$
\begin{equation*}
k_{\mu} d x^{\mu}=P^{-1}(d u+\bar{Y} d \zeta+Y d \bar{\zeta}-Y \bar{Y} d v), \quad Y(x)=e^{i \phi} \tan \frac{\theta}{2}, \tag{3}
\end{equation*}
$$

where $Y(x)$ is projective angular coordinate, and

$$
\zeta=(x+i y) / \sqrt{2}, \bar{\zeta}=(x-i y) / \sqrt{2}, u=(z-t) / \sqrt{2}, v=(z+t) / \sqrt{2}
$$

are the null Cartesian coordinates.
Kerr congruence is controlled by the

## KERR THEOREM:

The geodesic and shear-free Principal null congruences (type D metrics) are determined by holomorphic function $Y(x)$ which is analytic solution of the equation

$$
\begin{equation*}
F\left(T^{a}\right)=0, \tag{4}
\end{equation*}
$$

where $F$ is an arbitrary analytic function of the projective twistor coordinates

$$
\begin{equation*}
T^{a}=\{Y, \quad \zeta-Y v, \quad u+Y \bar{\zeta}\} . \tag{5}
\end{equation*}
$$

Complex radial distance $\tilde{r} \equiv r+i a \cos \theta=-d F / d Y$.
The Kerr theorem is a practical tool for obtaining exact solutions:

$$
F\left(T^{a}\right)=0 \Rightarrow F\left(Y, x^{\mu}\right)=0 \Rightarrow Y\left(x^{\mu}\right) \Rightarrow k^{\mu}(x)
$$

For the Kerr-Newman solution function $F$ is quadratic in $Y$, which yields TWO roots $Y^{ \pm}(x) \Rightarrow$ two different congruences at the same background $M^{4}!$
Functions $F\left(T^{a}\right)$ of higher degrees in $Y$ correspond to multi-particle solutions, [AB (2006)].

Kerr singular ring $r+i a \cos \theta=0$ is a branch line of space on two sheets: "negative $(-)$ " and "positive $(+)$ ", where the fields change their directions. In particular,

$$
\begin{equation*}
k^{\mu(+)} \neq k^{\mu(-)} \quad \Rightarrow \quad g_{\mu \nu}^{(+)} \neq g_{\mu \nu}^{(-)} \tag{6}
\end{equation*}
$$

Twosheeted mystery created the problem of source of the KN solution.
Kerr's oblate spheroidal coordinates $x+i y=(r+i a) e^{i \phi} \sin \theta, \quad z=r \cos \theta$, cover spacetime twice: disk $r=0$ separates the 'out'-sheet $r>0$, from the 'in'-sheet $r<0$.
(a) Closed fundamental string: AB 1974, Gravitational strings: D.Ivanenko \& AB 1975, W.Israel 1977, Fundamental solitonic string solution to low energy string theory, G. Horowitz and A.Steif (1990), A. Sen (1992-1995), A. Dabholkar et al.(1995), AB(1995-2011).
(b) Relativistically rotating disk. Truncation of the Kerr negative sheet H.Kerres (1967), W.Israel (1969), Hamity, I.Tiomno (1973).
(c) Relativistically rotating membrane (bubble), C.López (1983).
(d) Gravitating soliton: supersymmetric vacuum bubble bounded by a closed string, AB (2010).
Close parallelism with the problem of repulson singularity in superstring/M-theory unification, excise of singularity and the model of enhancon.
(e) Complex KN source as a COMPLEX STRING, AB (1993-2012).

GRAVITATING SOLITON (AB, 2010) - chiral Higgs model. Supersymmetric phase transition from external KN solution to a 'false vacuum' bubble bounded by the domain wall M2-brane.
Perspective goal - description of the Weinberg-Salam model.
Peculiarities of the KN soliton model:
(i) the Kerr ring is regularized, forming a closed relativistically rotating string of the Compton radius $r_{c}$ on the border of disklike membrane,
(ii) the KN electromagnetic potential forms a quantized loop $\oint e A_{\varphi} d \varphi=-4 \pi m a$, which results in quantization of the soliton spin, $J=m a=n \hbar / 2, n=1,2,3, \ldots$,
(iii) the Higgs condensate forms a coherent vacuum state oscillating with the frequency $\omega=2 m$ - oscillon,

## Complex Structure of the Kerr geometry.

Kerr's complex radial distance $\tilde{r} \equiv r+i a \cos \theta=x^{2}+y^{2}+(z+i a)^{2}$, in Cartesian coordinates shows that it is a complex shift of the real one.
Complex shift of the Coulomb solution $\Phi=\operatorname{Re}(q / \sigma)$ Appel solution 1887 !
$r$ and $\theta$ turn into Kerr's oblate spheroidal coordinates.
There is exact correspondence between Appel's complex shift and KerrSchild geometry. The Kerr-Newman solution is generated by a complex source, positioned in complex region! Newman's retarded-time construction (1973).

## Complex Kerr-Schild geometry.

Complex light cones with the vertexes on the complex world-line $x_{0}^{\mu} \in C M^{4}: \quad\left(x_{\mu}-\right.$ $\left.x_{0 \mu}\right)\left(x^{\mu}-x_{0}^{\mu}\right)=0$, are splits into two families of the "left" and "right" complex null planes: $x_{L}^{\mu}=x_{0}^{\mu}(\tau)+\alpha e^{1 \mu}+\beta e^{3 \mu} e^{1}$ and $e^{3}$, and $x_{R}^{\mu}=x_{0}^{\mu}(\tau)+\alpha e^{2 \mu}+\beta e^{3 \mu}$, spanned by the null tetrad $e^{a},\left(e^{a}\right)^{2}=0$.
Twistors are created by complex shift!
The Kerr congruence arises from real slices of the family of the "left" null planes ( $Y=$ const.) of the complex light cones whose vertices lie at a complex world-line $x_{0}(\tau)$.

Complex string as source of the Kerr geometry. AB [gr-qc/9303003, 1203.4210]. Kerr's geometry is created by a mysterious "particle" propagating along a complex world-line (CWL) $x_{0}^{\mu}(\tau)$ parametrized by complex time $\tau=t+i \sigma$.

It forms a world-sheet. [Earlier discussion of the complex world-line as a string by Oogury and Vafa (1991).]

The corresponding "hyperbolic string" equation $\partial_{\tau} \partial_{\bar{\tau}} x_{0}(t, \sigma)=0$, has the general solution $x_{0}(t, \sigma)=x_{L}(\tau)+x_{R}(\bar{\tau})$ as a sum of the analytic and anti-analytic modes $x_{L}(\tau), \quad x_{R}(\bar{\tau})$, which are not necessarily complex conjugate. The complex retarded-time parameters $\tau$ and $\bar{\tau}$. Four different roots for the Left and Right complex retarded-advanced times

$$
\begin{align*}
\tau_{L}^{\mp} & =t \mp\left(r_{L}+i a \cos \theta_{L}\right)  \tag{7}\\
\tau_{R}^{\mp} & =t \pm\left(r_{R}+i a \cos \theta_{R}\right) . \tag{8}
\end{align*}
$$

The real slice condition determines relation $\sigma=a \cos \theta$ with null directions of the Kerr congruence $\theta \in[0, \pi]$, which puts restriction $\sigma \in[-a, a]$ indicating that the complex string is open, and its endpoints $\sigma= \pm a$ may be associated with the Chan-Paton charges of a quark-antiquark pair.

Boundary conditions require orientifold structure: the open string string is formed as closed and folded.

The complex conjugate world-lines, $X_{L}\left(\tau_{L}\right)$ and $X_{R}\left(\tau_{R}\right)$.


Figure 1: Complex light cone at a real point $x$. The adjoined to congruence Left and Right complex null planes. Four roots: $X_{L}^{\text {adv }}, X_{L}^{\text {ret }}$ and $X_{R}^{\text {adv }}, X_{R}^{\text {ret }}$ which are related by crossing symmetry.

Kerr theorem $\Rightarrow$ twoseetedness of the Kerr geometry.
For Kerr solution function $F\left(T^{A}\right)$ is quadratic in $Y$. It is a quadric in twistorial $C P^{3}$, $F=A\left(x^{\mu}\right) Y^{2}+B\left(x^{\mu}\right) Y+C\left(x^{\mu}\right)$. Solution $Y^{ \pm}(\mathrm{x})=(-\mathrm{B} \mp \tilde{\mathrm{r}}) / 2 \mathrm{~A}$, where the complex radial distance $\tilde{r}=-\left(B^{2}-4 A C\right)^{1 / 2}$.
Left and Right complex structures form a wordsheet orientifold of the complex string. $\Omega=$ Compl. Conj. + Revers of radial coordinate.
Antipodal map: $Y^{+} \rightarrow-1 / \bar{Y}^{-}$. Orientifolding of the retarded and advanced fields and the Kerr congruence $Y^{+}$and $Y^{-}: \Omega+$ Antipodal map.

## Kerr theorem for multi-particle KS space-times.

Selecting an isolated i-th particle with parameters $q_{i}$, one can obtain the roots $Y_{i}^{ \pm}(x)$ of the equation $F_{i}\left(Y \mid q_{i}\right)=0$ and express $F_{i}$ in the form

$$
\begin{equation*}
F_{i}(Y)=A_{i}(x)\left(Y-Y_{i}^{+}\right)\left(Y-Y_{i}^{-}\right) . \tag{9}
\end{equation*}
$$

Then, the $(+)$ or $(-)$ root $Y_{i}^{ \pm}(x)$ determines congruence $k_{\mu}^{(i)}(x)$ and consequently, the Kerr-Schild metric $g_{\mu \nu}^{(i)}=\eta_{\mu \nu}+2 h^{(i)} k_{\mu}^{(i)} k_{\nu}^{(i)}$.

For a system of $k$ particles we form the function $F$ as a product of the known blocks $F_{i}(Y)$,

$$
\begin{equation*}
F(Y) \equiv \prod_{i=1}^{k} F_{i}(Y) . \tag{10}
\end{equation*}
$$

Solution of the equation $F=0$ acquires $2 k$ roots $Y_{i}^{ \pm}$, and the twistorial space turns out to be multisheeted.

The twistorial structure on the i-th $(+)$ or $(-)$ sheet is determined by the equation $F_{i}=0$ and does not depend on the other functions $F_{j}, \quad j \neq i$. Therefore, the particle $i$ does not feel the twistorial structures of other particles. Similar, the condition for singular lines $F=0, d_{Y} F=0$ splits into k independent relations

$$
\begin{equation*}
F_{i}=0, \quad \prod_{l \neq i}^{k} F_{l} d_{Y} F_{i}=0 \tag{11}
\end{equation*}
$$

The number of surrounding particles and number of blocks in the generating function $F$ may be assumed countable. In this case the multi-sheeted twistorial space-time will possess the properties of the multi-particle Fock space.


Figure 2: The lightlike interaction of two sources occurs via a common twistor line connecting out-sheet of one source to in-sheet of another.

The Left and Right structures by excitations should be considered as independent and generated by different KN sources, which corresponds to two-particle KN system with quadratic generating functions of the Kerr theorem $F_{1}(T)$ and $F_{2}(T)$, determined on the projective twistor space $C P^{3}$.

Kerr Theorem $\Rightarrow$ the orientifold twistor system is to be described by the generating function $F_{12}(T)=$ $F_{1}(T) \cdot F_{2}(T)$. The corresponding equation

$$
F_{12}(T)=F_{1}(T) \cdot F_{2}(T)=0,
$$

is QUARTIC on the projective twistor space, and therefore the complex string forms a Calabi-Yau twofold (K3) embedded in the projective twistor space.

## CONCLUSION:

Striking parallelism with superstring theory. Is it accidental, or there is inherent relationships with superstring theory? Too many coincidences!

In many respects the Kerr-Schild gravity resembles the twistor-string theory (Nair, Witten) which is also four-dimensional and based on twistors, which determines its relationship with particle physics.

The complex Kerr string has mach in common with the $\mathrm{N}=2$ critical superstring, which is also related with twistors (Ooguri-Vafa) and has the real critical dimension four. Signature of the $N=2$ string is $(2,2)$ or $(4,0)$, which was principal obstacle for embedding in the Lorentzian space-times.

However, embedding of the $\mathrm{N}=2$ string in the complexified Kerr geometry is trivial task. It is simple the Newman's Complex World Line. The transfer to supersymmetry corresponds to a super-world-line, in which the Appel complex shift is replaced by a super-shift.

We suppose that stringlike structures of the real and complex Kerr geometry are not simply analogues, but reflect the underlying dynamics of the $\mathrm{N}=2$ superstring.

## THANK YOU FOR ATTENTION!

